Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527.

Identifieur interne : 000718 ( Main/Exploration ); précédent : 000717; suivant : 000719

Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527.

Auteurs : R S Ren [République populaire de Chine] ; M N Wang ; X M Chen ; Z J Zhang

Source :

RBID : pubmed:22562146

Descripteurs français

English descriptors

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Resistance is the best approach to control the disease. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be race non-specific and durable. However, genes conferring high-levels of HTAP resistance are limited in number and new genes are urgently needed for breeding programs to develop cultivars with durable high-level resistance to stripe rust. Spring wheat germplasm PI 183527 showed a high-level of HTAP resistance against stripe rust in our germplasm evaluations over several years. To elucidate the genetic basis of resistance, we crossed PI 183527 and susceptible wheat line Avocet S. Adult plants of parents, F(1), F(2) and F(2:3) progeny were tested with selected races under the controlled greenhouse conditions and in fields under natural infection. PI 183527 has a single dominant gene conferring HTAP resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) markers in combination with bulked segregant analysis (BSA) were used to identify markers linked to the resistance gene. A linkage map consisting of 4 RGAP and 7 SSR markers was constructed for the resistance gene using data from 175 F(2) plants and their derived F(2:3) lines. Amplification of nulli-tetrasomic, ditelosomic and deletion lines of Chinese Spring with three RGAP markers mapped the gene to the distal region (0.86-1.0) of chromosome 7BL. The molecular map spanned a genetic distance of 27.3 cM, and the resistance gene was narrowed to a 2.3-cM interval flanked by markers Xbarc182 and Xwgp5258. The polymorphism rates of the flanking markers in 74 wheat lines were 74 and 30 %, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 82 % of tested genotypes. To determine the genetic relationship between this resistance gene and Yr39, a gene also on 7BL conferring HTAP resistance in Alpowa, a cross was made between PI 183527 and Alpowa. F(2) segregation indicated that the genes were 36.5 ± 6.75 cM apart. The gene in PI 183527 was therefore designed as Yr52. This new gene and flanking markers should be useful in developing wheat cultivars with high-level and possible durable resistance to stripe rust.

DOI: 10.1007/s00122-012-1877-8
PubMed: 22562146


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527.</title>
<author>
<name sortKey="Ren, R S" sort="Ren, R S" uniqKey="Ren R" first="R S" last="Ren">R S Ren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, China Agricultural University, Beijing 100193, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Plant Pathology, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, M N" sort="Wang, M N" uniqKey="Wang M" first="M N" last="Wang">M N Wang</name>
</author>
<author>
<name sortKey="Chen, X M" sort="Chen, X M" uniqKey="Chen X" first="X M" last="Chen">X M Chen</name>
</author>
<author>
<name sortKey="Zhang, Z J" sort="Zhang, Z J" uniqKey="Zhang Z" first="Z J" last="Zhang">Z J Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22562146</idno>
<idno type="pmid">22562146</idno>
<idno type="doi">10.1007/s00122-012-1877-8</idno>
<idno type="wicri:Area/Main/Corpus">000702</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000702</idno>
<idno type="wicri:Area/Main/Curation">000702</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000702</idno>
<idno type="wicri:Area/Main/Exploration">000702</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527.</title>
<author>
<name sortKey="Ren, R S" sort="Ren, R S" uniqKey="Ren R" first="R S" last="Ren">R S Ren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, China Agricultural University, Beijing 100193, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Plant Pathology, China Agricultural University, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, M N" sort="Wang, M N" uniqKey="Wang M" first="M N" last="Wang">M N Wang</name>
</author>
<author>
<name sortKey="Chen, X M" sort="Chen, X M" uniqKey="Chen X" first="X M" last="Chen">X M Chen</name>
</author>
<author>
<name sortKey="Zhang, Z J" sort="Zhang, Z J" uniqKey="Zhang Z" first="Z J" last="Zhang">Z J Zhang</name>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="eISSN">1432-2242</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (immunology)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>DNA, Plant (genetics)</term>
<term>Genes, Plant (genetics)</term>
<term>Genetic Linkage (MeSH)</term>
<term>Genetic Markers (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Immunity, Innate (genetics)</term>
<term>Linkage Disequilibrium (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Polymorphism, Genetic (MeSH)</term>
<term>Seasons (MeSH)</term>
<term>Triticum (genetics)</term>
<term>Triticum (immunology)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (immunologie)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Déséquilibre de liaison (MeSH)</term>
<term>Gènes de plante (génétique)</term>
<term>Immunité innée (génétique)</term>
<term>Liaison génétique (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Marqueurs génétiques (MeSH)</term>
<term>Polymorphisme génétique (MeSH)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Saisons (MeSH)</term>
<term>Température élevée (MeSH)</term>
<term>Triticum (génétique)</term>
<term>Triticum (immunologie)</term>
<term>Triticum (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Chromosomes, Plant</term>
<term>Genes, Plant</term>
<term>Immunity, Innate</term>
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Basidiomycota</term>
<term>Chromosomes de plante</term>
<term>Gènes de plante</term>
<term>Immunité innée</term>
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Basidiomycota</term>
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Basidiomycota</term>
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Genetic Linkage</term>
<term>Genetic Markers</term>
<term>Hot Temperature</term>
<term>Linkage Disequilibrium</term>
<term>Polymerase Chain Reaction</term>
<term>Polymorphism, Genetic</term>
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartographie chromosomique</term>
<term>Déséquilibre de liaison</term>
<term>Liaison génétique</term>
<term>Marqueurs génétiques</term>
<term>Polymorphisme génétique</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Saisons</term>
<term>Température élevée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Resistance is the best approach to control the disease. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be race non-specific and durable. However, genes conferring high-levels of HTAP resistance are limited in number and new genes are urgently needed for breeding programs to develop cultivars with durable high-level resistance to stripe rust. Spring wheat germplasm PI 183527 showed a high-level of HTAP resistance against stripe rust in our germplasm evaluations over several years. To elucidate the genetic basis of resistance, we crossed PI 183527 and susceptible wheat line Avocet S. Adult plants of parents, F(1), F(2) and F(2:3) progeny were tested with selected races under the controlled greenhouse conditions and in fields under natural infection. PI 183527 has a single dominant gene conferring HTAP resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) markers in combination with bulked segregant analysis (BSA) were used to identify markers linked to the resistance gene. A linkage map consisting of 4 RGAP and 7 SSR markers was constructed for the resistance gene using data from 175 F(2) plants and their derived F(2:3) lines. Amplification of nulli-tetrasomic, ditelosomic and deletion lines of Chinese Spring with three RGAP markers mapped the gene to the distal region (0.86-1.0) of chromosome 7BL. The molecular map spanned a genetic distance of 27.3 cM, and the resistance gene was narrowed to a 2.3-cM interval flanked by markers Xbarc182 and Xwgp5258. The polymorphism rates of the flanking markers in 74 wheat lines were 74 and 30 %, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 82 % of tested genotypes. To determine the genetic relationship between this resistance gene and Yr39, a gene also on 7BL conferring HTAP resistance in Alpowa, a cross was made between PI 183527 and Alpowa. F(2) segregation indicated that the genes were 36.5 ± 6.75 cM apart. The gene in PI 183527 was therefore designed as Yr52. This new gene and flanking markers should be useful in developing wheat cultivars with high-level and possible durable resistance to stripe rust.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22562146</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>12</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2242</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>125</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527.</ArticleTitle>
<Pagination>
<MedlinePgn>847-57</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00122-012-1877-8</ELocationID>
<Abstract>
<AbstractText>Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Resistance is the best approach to control the disease. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be race non-specific and durable. However, genes conferring high-levels of HTAP resistance are limited in number and new genes are urgently needed for breeding programs to develop cultivars with durable high-level resistance to stripe rust. Spring wheat germplasm PI 183527 showed a high-level of HTAP resistance against stripe rust in our germplasm evaluations over several years. To elucidate the genetic basis of resistance, we crossed PI 183527 and susceptible wheat line Avocet S. Adult plants of parents, F(1), F(2) and F(2:3) progeny were tested with selected races under the controlled greenhouse conditions and in fields under natural infection. PI 183527 has a single dominant gene conferring HTAP resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) markers in combination with bulked segregant analysis (BSA) were used to identify markers linked to the resistance gene. A linkage map consisting of 4 RGAP and 7 SSR markers was constructed for the resistance gene using data from 175 F(2) plants and their derived F(2:3) lines. Amplification of nulli-tetrasomic, ditelosomic and deletion lines of Chinese Spring with three RGAP markers mapped the gene to the distal region (0.86-1.0) of chromosome 7BL. The molecular map spanned a genetic distance of 27.3 cM, and the resistance gene was narrowed to a 2.3-cM interval flanked by markers Xbarc182 and Xwgp5258. The polymorphism rates of the flanking markers in 74 wheat lines were 74 and 30 %, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 82 % of tested genotypes. To determine the genetic relationship between this resistance gene and Yr39, a gene also on 7BL conferring HTAP resistance in Alpowa, a cross was made between PI 183527 and Alpowa. F(2) segregation indicated that the genes were 36.5 ± 6.75 cM apart. The gene in PI 183527 was therefore designed as Yr52. This new gene and flanking markers should be useful in developing wheat cultivars with high-level and possible durable resistance to stripe rust.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ren</LastName>
<ForeName>R S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, China Agricultural University, Beijing 100193, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>M N</ForeName>
<Initials>MN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>X M</ForeName>
<Initials>XM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Z J</ForeName>
<Initials>ZJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008040" MajorTopicYN="N">Genetic Linkage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22562146</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-012-1877-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Yi Chuan. 2003 May;25(3):317-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15639879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:75-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Feb;112(3):500-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16331478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Aug;117(3):391-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Sep;117(5):793-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18584147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Jan;166(1):461-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Dec;123(8):1401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21830107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Dec;112(1):97-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16208504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Oct;119(6):1119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19644666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 May;114(7):1277-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17318493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Apr;112(6):1143-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16435125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Feb;118(4):631-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18815766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Nov;117(8):1225-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18712342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Oct;109(6):1105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15490101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Dec;114(1):21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17008991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 6;323(5919):1357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Feb;106(4):636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12595992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Jan;122(1):189-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20838759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Oct;168(2):687-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15514045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2001 Aug;44(4):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11550883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Jun;123(1):143-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21455722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Apr;112(6):1098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16450183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Jan;118(2):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18946654</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chen, X M" sort="Chen, X M" uniqKey="Chen X" first="X M" last="Chen">X M Chen</name>
<name sortKey="Wang, M N" sort="Wang, M N" uniqKey="Wang M" first="M N" last="Wang">M N Wang</name>
<name sortKey="Zhang, Z J" sort="Zhang, Z J" uniqKey="Zhang Z" first="Z J" last="Zhang">Z J Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ren, R S" sort="Ren, R S" uniqKey="Ren R" first="R S" last="Ren">R S Ren</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000718 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000718 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22562146
   |texte=   Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22562146" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020